Elementorganische Amin/Imin-Verbindungen, XXVIII¹⁾

Polycyclische Phosphor-Stickstoff-Rhenium(I)-Komplexe

Otto J. Scherer*, Petra Quintus und William S. Sheldrick *)

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 5. Februar 1987

Die Thermolyse von $[(OC)_4Re - NR - P(Cl)(NR_2) - NR]$ (2), R = SiMe₃, ergibt die tricyclische Phosphor-Dispiroverbindung 3, den cubanartigen Rheniumkomplex $[Re_2(CO)_6(\mu_3-NR)_4(\mu_3-PNR)_2]$ (4) sowie den tetracyclischen Rheniumkomplex 5. Beim Versuch, 3 aus $RN - P(NR)(NR_2) - NR - \dot{P}(NR)(NR_2)$ (7), R = SiMe₃, und $[Re(CO)_5X]$ bzw. $[(OC)_4ReX]_2$ (X = Cl, Br) herzustellen, bildeten sich die Komplexsalze $[RN - (RN)(RHN)P - NR - \dot{P} - NR - SiMe_2 - NR]^{\oplus} [Re_2(CO)_6(\mu-X)_3]^{\oplus}$ (6a, X = Cl; 6b, X = Br). 3, 5 und 6a wurden durch eine Röntgenstrukturanalyse charakterisiert.

Unter den fünfbindigen Phosphorverbindungen der Koordinationszahl drei $(\sigma^3, \lambda^5 \cdot P)^{21}$ weist [Bis(trimethylsilyl)amino]bis(trimethylsilylimino)phosphoran (1) die vielseitigsten Ligandeneigenschaften auf³¹. So ergibt z. B. die Addition von [Re(CO)₅Cl] an 1 den Vierring-Chelat-Komplex [(OC)₄Re - NR - P(Cl)(NR₂) - NR] (2)⁴, der seinerseits einen idealen Baustein für die Synthese von polycyclischen Rhenium(I)-Komplexen mit nur heteroatomhaltigen Chelatliganden⁵ darstellt.

1 $(Me_3Si)_2N - P(=NSiMe_3)_2$

Thermolyse von $[(OC)_4 Re - NR - P(Cl)(NR_2) - NR]$ (2), R = SiMe₃

Erhitzt man 2 in Substanz auf 110° C, dann kann man nach 4 h ³¹P-NMR-spektroskopisch die Komplexe 3, 4 und 5 nachweisen und durch fraktionierende Kristallisation trennen. Die Phosphor-Dispiroverbindung 3 bildet farblose Plättchen(Ausb. ca. 7%), die sich in Lösung (Ether, Toluol) innerhalb weniger Tage zersetzen. Die wenig luftempfindlichen Kristalle des tetracyclischen Rhenium-Zweikernkom-. plexes 5 (Ausb. ca. 30%) sind in Dichlormethan löslich. Die extrem empfindlichen Kristalle der cubanartigen Rheniumverbindung 4 (Ausb. ca. 25%) lösen sich sehr gut in den gängigen aprotischen Lösungsmitteln.

Ein spirocyclischer Phosphor-Stickstoff-Vierring wurde erstmals 1964 von Becke-Goehring et al.^{6a)} bei der Umsetzung von PCl₅ mit MeNH₃Cl erhalten und durch eine Kristallstrukturanalyse^{6b)} als MeN-PCl₃-NMe-PCl-NMe-PCl(NMe)-NMe-PCl₃-NMe charakterisiert.

Im Gegensatz zu der großen Anzahl von cubanartigen Verbindungen der Zusammensetzung M_4A_4 (M = Über-

Element-Organic Amine/Imine Compounds, XXVIII¹⁾. – Polycyclic Phosphorus-Nitrogen Rhenium(I) Complexes

The thermolysis of $[(OC)_4Re - NR - P(Cl)(NR_2) - NR]$ (2), R = SiMe₃, affords the tricyclic phosphorus dispiro compound 3, the cubanelike rhenium complex $[Re_2(CO)_6(\mu_3-NR)_4(\mu_3-PNR)_2]$ (4) as well as the tetracyclic rhenium complex 5. The attempt to synthesize 3 from $RN - P(NR)(NR_2) - NR - P(NR)(NR_2)$ (7), R = SiMe₃, and $[Re(CO)_5X]$ or $[(OC)_4ReX]_2$ (X = Cl, Br), gave the ionic species $[RN - (RN)(RHN)P - NR - P - NR - SiMe_2 - NR]^{\oplus} [Re_2(CO)_6 (\mu-X)_3]^{\odot}$ (6a, X = Cl; 6b, X = Br). 3, 5, and 6a have been characterized by an X-ray structure analysis.

gangsmetall-Komplexfragment, A = Ligand) kennt man nur wenige Vertreter des Typs $M_4A_2B_2$ [z. B. $M_4F_2(OH)_2^{7j}$]. Cubanartig aufgebaute Moleküle mit ausschließlich Hauptgruppenelementen als Gerüstbausteinen (z. B. Sn-N- und Ge-N-^{8a}), Sn-B-N-^{8b}), P-N-^{8c,d}), Li-Br-C-^{8e}) und Li-Na-N-Verbindungen^{8f}) sind ebenfalls eine Rarität.

Denkt man sich bei $R_2N - P(=NR)_2(1)$, $R = SiMe_3$, eine Gruppe R am Aminstickstoffatom entfernt, dann erhält man formal A, ein Derivat des monomeren Metaphosphat-Ions (vgl. dazu die kristallstrukturanalytisch charakterisierten Ionen $[P(=C_1)_3]^{\ominus 9a}$ und $PS_3^{\ominus 9b}$), das formal mit sich

^{*)} Röntgenstrukturanalyse.

selbst in einer [2 + 2]-Cycloaddition das Dimere **B**, einen mehrzähnigen Komplexliganden, ergeben könnte (vgl. dazu z. B. Ag₂[P₂S₆]^{10a)}, Tl₂[P₂S₆]^{10b)} sowie [Et₃NH]₂-[S₂P-NR-PS₂-NR]^{10c)}).

In 3 und 4 fungiert das Dianion B als 8e- bzw. 12e-Donor-Ligand gegenüber Rhenium(I).

Für die Bildung der Polycyclen 3-5 kann folgender Reaktionsverlauf diskutiert werden: a) Bildung des Dispirokomplexes 3 aus 2 unter vermutlich intermolekularer Me₃SiCl-Abspaltung. b) Thermische CO-Eliminierung bei 3 unter Bildung des cubanartigen Komplexes 4. c) Reaktion von 4 mit zwei Mol HCl (wahrscheinlich entstanden durch HCl-Eliminierung in 2, vgl. hierzu Lit.¹¹) unter Me₃SiCl-Abspaltung und Bildung des Tetracyclus 5. Dieser Reaktionsmechanismus wird durch die Tatsache gestützt, daß isoliertes 3 thermisch in 4 (³¹P-NMR-Reaktionskontrolle) übergeführt wird (was gleichzeitig dessen geringe Ausbeute erklären kann) und Me₃SiCl ¹H-NMR-spektroskopisch zweifelsfrei (identischer Zusatz) nachgewiesen werden kann. Versuche, das elektronenreiche, mehrzähnige Ligandensystem [P₂(NSiMe₃)₆]²⁻ (B) ausgehend von 7 und [Re(CO)₅X] bzw. [(OC)₄ReX]₂ (X = Cl, Br) durch Cothermolyse in Toluol herzustellen, führten nicht zu 3 (³¹P-NMR-Kontrolle), sondern zu den ionisch aufgebauten Verbindungen 6a, b, die in Dichlormethan gut löslich und in fester Form kurzfristig luftstabil sind.

Tab. 1. ¹H-, ¹³C{¹H}-, ³¹P{¹H}-NMR- und v(CO)-IR-Daten der Komplexe 3-6; δ in ppm, J in Hz; v in cm⁻¹

	1 _{H-NMR} a)	¹³ C{ ¹ H}-NMR	b)	³¹ P{ ¹ H}-NMR c)	d)	
NI -	δ CH ₃ Si	δ CH ₃ Si	δ CO	δ Ρ		
3	0.58(s,18H), 0.59(s,36H)	3.12(8,6C) 6.13(8,12C)	184.9(s,4C) 187.8(s,4C)	-1.93(s)	2095(w), 1985(s) 1965(m), 1935(s)	
4	0.34(s,10H), 0.62(s,18H) 0.77(s,18H)	2.56(s,6C), 4.03(s,6C) 5.87(s,6C)	193.5(s,4C) 194.7(s,2C)	-8.31(5)	2040(m), 2020(s) 1870(m,br), 1820(vs,br)	
5	353 K: 0.17(s,9H), 0.21(s,18H) 0.50(s,18H) 203 K: 0.19(s,3H), 0.21(s,3H) 0.39(s,3H), 0.26(s,9H) 0.30(s,9H), 0.35(s,18) 6 NH(353 K): 2.64(br,2H) 203 K: 2.47(d, ¹ H; 2 J(31 P ¹ H)4 2.65(d, ¹ H; 2 J(31 P ¹ H)6.5	233 K: U.33(s,6C), U.74(s,3c) 1.76(s,3C), 2.63(s,2C) 4.43(s,1C)	192.8(s,1C), 194.7(s,1C), 195.5(s,1C),	293 K: 194.6(s,1C) 30.11(s) 195.2(s,1C) 273 K: 196.1(s,1C) 30.1(d,1P 30.6(d,1P $2_{J}({}^{3}I_{P}{}^{3}I_{P}$ ${}^{31}P_{-}{}^{1}H_{-}ge$ 31.7(d,1P 29.9(ddd) $2_{J}({}^{31}P_{-}{}^{3}I_{P}$ $2_{J}({}^{31}P_{-}{}^{1}H_{+})$	2030(s), 2020(s) 1920(s,br), 1880(vs,br)) 3350-3450(br,vNH)))17 koppelt))17.3 $z^2 J ({}^{31} p^1 H') v5$	
6a ≍ = X = C1	0.09(s,9H), 0.29(s,9H) 0.36(s,9H), 0.39(s,9H) 0.40(s,18H), 0.69(s,6H,5iMe ₂) δ NH: 2.29(br, ¹ H)	0.85(s,6C), 1.11(s,3C) 1.55(s,6C), 1.82(s,3C) & SiMe ₂ : 3.08(s,1C) 3.76(s,1C)	193.4(s,6C)	-44.17(d, 2 ⁵ P 7.79(d, 2 ⁴ P 2 _J (³¹ P ³¹ P)4.) 1910(s,br), 2023(s)) 3380-3450(br _{,V} NH) 2	
éb X = Br	0.02(s,9H), 0.22(s,9H) 0.28(s,9H), 0.31(s,9H) 0.33(s,18H), δ 5iMe ₂ : 0.61(s,3H), 0.62(s,3H) δNH: 2.28(br,1H)	0.40(s,6C), 0.67(s,6C) 1.11(s,6C) & SiMe ₂ : 2.60(s,1C) 3.27(s,1C)) 192.6(s,6C)	-44.24(d, x ⁵ P 7.97(d, x ⁴ P ² J(³¹ P ³¹ P)4.) 1920(s,br), 2018(s)) 3375-3445(br,vNH) 1	

a) 200 MHz, TMS int. $\frac{3}{2}$ (363 K), $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{6}{2}$ CD₂Cl₂.- b) 50.28 MHz, TMS int. $\frac{3}{2}$ (303 K), $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{6}{2}$ CD₂Cl₂.- c) 80.82 MHz, 85-proz. H₃PO₄ ext. $\frac{3}{2}$ und $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{4}{2}$ [Cl₂Cl₂.- c) $\frac{1}{2}$ und $\frac{4}{2}$ Toluol, $\frac{5}{2}$ und $\frac{4}{2}$ [D_B]Toluol, $\frac{5}{2}$ und $\frac{6}{2}$ CD₂Cl₂.- $\frac{1}{2}$]

Die konduktometrisch bestimmte molare Leitfähigkeit der Salze **6a, b** liegt mit 79.9 (**6a**) bzw. 74.5 (**6b**) $[S \cdot cm^2 \cdot mol^{-1}]$ im erwarteten Bereich (vgl. dazu Lit.^{4,12}).

NMR-Spektren

Die NMR-spektroskopischen Daten der Polycyclen 3-6 sind in Tab. 1 zusammengestellt.

Im ¹H-NMR-Spektrum von 3 findet man bei 363 K zwei Silylsignale (18H: 36H), deren intensitätsschwächeres (Tab. 1) den Me₃Si-Gruppen am P₂N₂-Ring zuzuordnen ist. Bei Temperaturerniedrigung zeigen diese beiden Me₃Si-Gruppen dynamisches Verhalten ($T_c = 253$ K, das Tieftemperaturgrenzspektrum konnte nicht erreicht werden; das gleiche gilt für das ¹³C-NMR-Spektrum). Das ³¹P-NMR-Signal ist gegenüber dem des Eduktes 2 ($\delta = 15.1$) um ca. 17 ppm hochfeldverschoben.

Im ¹H-NMR-Spektrum des cubanartigen Rhenium-Komplexes **4** findet man erwartungsgemäß drei intensitätsgleiche Signalsätze (Tab. 1). Das leicht hochfeldverschobene Singulett bei 0.34 ppm kann den exocyclischen Me₃Si-Gruppen zugeordnet werden, da temperaturabhängige Messungen für die übrigen Silylgruppen bei Temperaturerniedrigung (Signal bei 0.62 ppm, $T_c = 228$ K, $\Delta G_{T_c}^{\pm} = 48.4$ (kJ/mol]; Signal bei 0.77 ppm, $T_c = 263$ K, $\Delta G_{T_c}^{\pm} = 52.6$ [kJ/mol]) eine Rotationsbehinderung um die Si-N-Bindung (Aufspaltungsmuster vom Integralverhältnis 2:1) zeigen. Die ¹³C-NMR-Untersuchungen bestätigen die ¹H-NMR-Befunde. Im ³¹P-NMR beobachtet man gegenüber **3** eine noch stärkere Hochfeldverschiebung.

Das ¹H-Tieftemperatur-NMR-Spektrum (203 K) des Tetracyclus 5 ergibt sechs Singuletts (Tab. 1) vom Integralverhältnis 3:3:3:9:9:18, von denen das intensitätsstärkste Signal (18 H) den äquivalenten Me₃Si-Gruppen an den exocyclischen N-Atomen des P-Atoms P2 (vgl. dazu Diskussion der Kristallstruktur) zugeordnet werden kann. Eine der drei restlichen Me₃Si-Gruppen weist bei 203 K eine Rotationsbehinderung um die Si-N-Bindung (Integralverhältnis 1:1:1) auf. P-NH-Kopplungen (Tab. 1) werden nur zu einem Phosphoratom (P2) beobachtet. Temperaturerhöhung führt zunächst zur Verbreiterung der NH-Signale und fast gleichzeitig zur Aufhebung der N-Si-Rotationsbehinderung. Letztlich ergeben sich im ¹H-NMR-Spektrum bei 353 K neben einem breiten Signal der NH-Protonen drei Me₃Si-Signale (Tab. 1) vom Integralverhältnis 1:2:2. Eine befriedigende Deutung dieser offensichtlich sehr komplexen dynamischen Prozesse (Verdünnungsexperimente ergeben keinen Hinweis auf intermolekulare Prozesse) kann bislang nicht gegeben werden. Das Tieftemperatur-¹³C-NMR-Spektrum bestätigt das Vorliegen einer unsymmetrischen Struktur durch sechs CO-Signale (gegenüber Edukt 2 tieffeldverschoben) sowie fünf Me₃Si-Signale (zwei Methylgruppen der rotationsbehinderten Me₃Si-Gruppe sind zufällig magnetisch äquivalent, Tab. 1). Temperaturabhängige ¹³C-NMR-Untersuchungen können aufgrund der geringen Signalintensität keine zusätzlichen Informationen über die dynamischen Eigenschaften von 5 liefern.

Im ¹H-NMR-Spektrum der ionisch aufgebauten Komplexe **6a**, **b** sind die vier Ring-N-SiMe₃-Gruppen inäquivalent, die exocyclischen dagegen äquivalent (1,3-Wanderung des H-Atoms, Tab. 1; vgl. dazu auch Kristallstrukturanalyse von **6a**). Das Signal der SiMe₂-Einheit ist bei beiden Verbindungen geringfügig tieffeldverschoben. Im Falle von **6a** beobachtet man für die zwei Methylgruppen zufällige magnetische Äquivalenz. Das NH-Proton-Signal ist in beiden Fällen breit. Das ³¹P-NMR-Dublettsignal bei tieferem Feld (Tab. 1) wird jeweils dem Spirophosphoratom (λ^4 P) zugeordnet.

Kristall- und Molekülstruktur der Polycyclen 3, 5 und 6a¹³⁾

Die Atomabstände und Bindungswinkel sind in den Tabellen 2-4, die Atomkoordinaten und Temperaturfaktoren in den Tabellen 5-7 zusammengefaßt.

Abb. 1. Molekülstruktur von 3 (Molekül a) mit Atomnumerierung

Tab. 2. Ausgewählte Bindungsabstände und -winkel von 3, Molekül a (Molekül b in Klammern)

Bindungs	sabstände	(pm)							
Re1-N1	220.7(6)	(223.	1(6))	Re-C-N	Aittelw.	191.7	7(9)	(193.9	9(10))
Re1-N2	224.0(5)	(220.	9(6))	Si-C-N	Aittelw.	186.3	3(9)	(185.	7(9))
P1-N1	158.6(6)	(159.	7(6))	C -C-N	Aittelw.	117.4	4(9)	(115.9	9(9))
P1-N2	156.6(6)	(159.	3(6))	Re1F	° 1	285.	1(6)	(284.	5(6))
P1-N3	170.6(6)	(172.	3(6))	P1F	11	251.0)(6)	(250.9	9(6))
Si1-N1	174.7(6)	(173.	1(6))	N1M	N2	243.	1(7)	(245.8	3(7))
Si2-N2	175.6(6)	(174.	3(5))	N3M	13'	231.0	3(7)	(231.0	3(7))
Si3-N3	177.6(6)	(176.	1(6)						
Bindung	swinkel (°)							
N1-Re1-	N2 66.3	(2) (67.2(2)) Re	e1-N1-P1	96	.1(3)	(94	.5(3))
N1-Re1-I	169.5	(3) (1	69.5(3)) Re	e1-N1-Si1	120	.5(3)	(120	.2(3))
N1-Re1-1	103.5	(3) (1	01.9(3)) P'	1-N1-Si1	142	.6(4)	(143	.9(4))
N1-Re1-0	96.7	(3) (97.3(3)) Re	e1-N2-P1	95	.4(3)	(95	.5(3))
N1-Re1-I	C4 91.6	(3) (92.6(3)) Re	e1-N2-Si2	119	.0(3)	(120	.5(3))
N2-Re1-0	C1 103.3	(3) (1	02.3(3)) P	1-N2-5i2	143	.5(4)	(142	.9(4))
N2-Re1-	C2 169.7	(3) (1	69.0(3)) P'	1-N3-Si3	133	.0(3)	(133	.4(4))
N2-Re1-0	03 97.1	(3) (97.6(3)) P'	1-N3-P1'	94	.7(3)	(94	.1(3))
N2-Re1-1	C4 92.2	(3) (92.4(3)) C-	-Si-C	108	.3(4)	(108	.3(4))
C3-Re1-	C4 169.5	(4) (1	68.1(4)) (1	Mittelw.))			
C-Re-C	86.3	(4) (86.3(4)) Re	e-C-0	173	.9(8)	(173	.5(9))
(Mittel	w.)_			(1	Mittelw.))			
Winkel zwischen definierten Ebenen (°)									
Ebene		defi	nierend	e Ator	ne		1		3
1	N	1	Re1	N2	P1	2	90.	4	
2	P	1	N3	P1'	N3 '		(89.	9)	
3	N	ı	Re1	N2		4		14	57.8
4	N	1	P1	N2				(1	55.8)

Die Molekülstruktur der tricyclischen Phosphor-Dispiroverbindung 3 ist mit den zugehörigen Atomnumerierungen in Abb. 1 aufgezeigt.

3 weist in der Elementarzelle zwei unabhängige Moleküle a und b auf, die sich in ihren Abständen und Winkeln nicht signifikant unterscheiden (bei der Diskussion beziehen sich die Werte in Klammern auf Molekül b). Der zentrosymmetrische Komplex 3 hat als zentrales Strukturelement ein dispirocyclisches Ligandensystem mit fast linearer Anordnung der Rhenium- und Phosphoratome. Der N2P2-Vierring ist planar, die PN2Re-Vierringe sind an der N···N-Achse schwach geknickt [Knickwinkel 167.8° (165.8°)]. Der Interplanarwinkel zwischen den Ebenen 1 und 2 beträgt 90.4 (89.9°), der zwischen den Ebenen 3 und 4 167.8° (165.8°). Die Koordinationsgeometrie der Rheniumatome ist verzerrt oktaedrisch (Tab. 2) mit erwartungsgemäß deutlich verkleinerten N-Re-N-Winkeln von $66.3(2)^{\circ}$ [67.2(2)°]. Die Winkel zwischen den apicalen CO-Gruppen und basalen N-Atomen sind möglicherweise aufgrund der sterisch anspruchsvollen Me₃Si-Reste etwas aufgeweitet. Die Phosphoratome sind jeweils von vier Stickstoffatomen verzerrt tetraedrisch umgeben. Im Tricyclus 3 fungiert das Ligandensystem **B** als 8e-Donor gegenüber den beiden (OC)₄Re(I)-Einheiten, woraus folgende Bindungsverhältnisse resultieren: die P-N-Abstände für die "terminalen" N-Atome (N1, N2) sind mit 158.6(6) und 156.6(6) pm [159.7(6), 159.3(6) pm] gegenüber denen der zentralen Brücken-N-Atome (N3) 170.6(6) pm [172.3(6) pm] deutlich verkürzt, was aufgrund des delokalisierten π -Bindungssystems bei **B** verständlich ist. Die Bindungswinkel im zentralen Vierring betragen 85.3(3)° [85.9(3)°] am Phosphor- und 94.7(3)° [94.1(3)°] am Stickstoffatom und sind gegenüber den N1-P1-N2-Winkeln 100.9(3)° [100.8(3)°] verkleinert, ein Trend, der sich mit den Strukturdaten des Hexathiometadiphosphat-Ions (z. B. Lit.^{10a,b)} deckt und somit für den Dianiontyp $[P_2X_6]^{2-}$ (X = S, NSiMe₃ (B)) eine nicht unerwartete Analogie erkennen läßt.

Die Molekülstruktur des tetracyclischen Rhenium-Komplexes 5 ist mit den zugehörigen Atomnumerierungen in Abb. 2 aufgezeigt.

Abb. 2. Molekülstruktur von 5 mit Atomnumerierung

Tab. 3. Ausgewählte Bindungsabstände und -winkel von 5

Bindungsabstä	inde (pm)					
Re1-Cl1	252.1(3)	P1-N1	156.8(9)	Si4-N4	176.7(9)
Re2-C11	Z52.1(4)	P1-N2	165.3(8)	515-N5	179.3(9)
Re1-N1	221.9(9)	P1-N3	167.9(8)	5i6-N6	179.6(9)
Re1-N2	231.6(10) P1-N4	171.1(8)	Re1Re2	364.2(5)
Re2-N2	230.6(8)	P2-N3	163.4(9)	P1P2	239.3(8)
Re2-N3	217.6(8)	P2-N4	171.3(9)	N1N2	253.5(15)
Re1-C-Mittelw	186.8(15) P2-N5	161.1(9)	N2N3	254.4(15)
Re2-C-Mittelw	. 18B.1(13) P2-N6	162.2(9)	N3N4	236.9(15)
Si-C-Mittelw.	188.4(13) Si1-N1	173.1(10)	N5N6	258.5(15)
C-O-Mittelw.	115.9(14) Si2-N2	176.1(8)			
Bindungswinke	el (°)					
C11-Re1-N1	86.8(3)	N2-Re2-N3	69.1(3) N4-P2-	-N6	118.8(5)
C11-Re1-N2	80.0(2)	N2-Re2-C4	101.2(5) N5-P2-	-N6	106.1(5)
C11-Re1-C1	88.3(4)	N2-Re2-C5	169.5(4) Re1-N	1–P1	95.2(5)
C11-Re1-C2	93.7(5)	NZ-Re2-C6	101.9(5) Re1-N	1-Sil	122.5(5)
Cl1-Re1-C3	178.2(5)	N3-Re2-C4	168.2(5) P1-N3	-Sil	139.8(6)
N1-Re1-N2	67.9(3)	N3-Re2-C5	101.0(4) Re1N	2-Re 2	104.0(4)
N1-Re1-C1	169.0(5)	N3-Re2-C6	99.8(4) Re1-N	2-P1	89.4(4)
N1-Re1-C2	103.6(5)	C4-Re2-C5	88.1(5) Re1-N	2-Si2	114.5(5)
N1-Re1-C3	94.5(5)	C4-Re2-C6	88.7(6) Re2-N	2-P1	93.0(4)
N2-Re1-C1	101.6(5)	C5-Re2-C6	83.0(6) Re2-N	2-5i2	121.3(4)
N2-Re1-C2	169.5(6)	Re1-Cl1-R	e2 92.5(1) P1-N2	-Si2	128.2(6)
N2-Re2-C3	101.6(5)	N1-P1-N2	103.8(5) Re2-N	3-P1	97.0(4)
C1-Re1-C2	86.5(6)	N1-P1-N3	125.0(5) Re2-N	3-P2	131.9(5)
C1-Re1-C3	90.6(6)	N1-P1-N4	116.0(5) P1-N3	-P2	92.5(4)
C2-Re1-C3	84.0(7)	NZ-P1-N3	99.5(4) P1-N4	-P2	88.7(4)
C11-Re2-N2	80.2(3)	N2-P1-N4	124.Z(3) P1-N4	-Si4	142.7(5)
C11-Re2-N3	80.2(2)	N3-P1-N4	88.7(4) P2-N4	-Si4	128.6(5)
C11-Re2-C4	91.6(4)	N3-P2-N4	90.1(4) PZ-N5	~Si5	132.3(6)
Cl1-Re2-C5	94.8(5)	N3-P2-N5	121.6(5) P2-N6	-5i6	132.5(6)
Cl1-Re2-C6	177.7(4)	N3-P2-N6	111.4(5) Re-C-	O-Mittel	w.177(1)

Die Winkel zwischen den Ebenen P1-N3-Re2-N2, P1-N1-Re1-N2 und Re1-N2-Re2-Cl1 betragen 68.03°, 88.57° und 94.57° und ergeben für dieses Gerüst einen geöffneten, deutlich verzerrten Kubus. Die Koordinationsgeometrie der Re-Atome ist verzerrt oktaedrisch, die der P-Atome verzerrt tetraedrisch (Tab. 3). Im Gegensatz zu den trigonal-planar koordinierten Atomen N1 und N4 (Winkelsumme 357.5 bzw. 360°) liegt die Winkelsumme von N3 (321.4°) und N2 (z. B. 307.9°) im Bereich tetraedrischer Koordination. Vierter Bindungspartner an N3 ist ein röntgenstrukturanalytisch nicht lokalisierbares H-Atom. Die Abstände P2-N5 und P2-N6 sind annähernd gleich und liegen mit Werten von 161.1(9) pm bzw. 162.2(9) pm im Bereich zwischen P-N-Einfach- und -Doppelbindungslängen; ein Befund, der auf eine intramolekulare 3z2e-N5-H-N6-Bindung hinweist. Der Abstand N5...N6 liegt mit 258.5(15) pm unterhalb der Summe der van-der-Waals-Radien (300 pm) und damit in einem Bereich, der eine Dreizentrenbindung möglich erscheinen läßt (vgl. dazu Lit.14). Der P₂N₂-Vierring ist nahezu eben, die größte Abweichung von der Ausgleichsebene beträgt 1.2 pm. Der P1--N1-Abstand liegt mit 156.8(9) pm im Bereich von P-N-Doppelbindungslängen; alle übrigen P-N-Abstände weisen keine Besonderheiten auf. Der Re1…Re2-Abstand von 364.2(5) pm ist deutlich größer als eine Re-Re-Einfachbindung (vgl. dazu Lit.15)).

Abb. 3 gibt die Molekülstruktur des Komplexsalzes 6a wieder.

Abb. 3. Molekülstruktur von 6a mit Atomnumerierung

Tab.	4.	Ausgewählte	Bindungsabstände	und	-winkel	von 6a

Bindungsa	bständ	le (pm)					
Kation:					Ar	nion:	
P1-N1		163.9(3)) Si3-N3	177.1(3)	Re	e1-C11	249.8(1)
P1-N2		148.7(3)) Si4-N4	177.0(3)	Re	e1-C12	250.0(1)
P1-N3		174.1(3)) Si5-N5	176.8(3)	Re	e1-C13	249.2(1)
P1-N4		173.6(3)) Si6-N6	177.5(3)	Re	e2-Cl1	251.5(1)
P2-N3		163.6(3)) Si7-N5	177.4(3)	Re	e2-C12	250.4(1)
P2-N4		164.8(3)) Si7-N6	177.6(3)	R	e2-C13	249.8(1)
P2-N5		163.9(3)) P1P2	246.6(3)	R	e-C-Mittelw.	188.6(6)
P2-N6		162.6(3)	P2Si7	245.4(3)	C	-D-Mittelw.	114.2(6)
Si-C-Mitt	elw.	187.1(5)) N3N4	231.0(4)	R	e1Re2	336.3(5)
Sil-N1		177.4(3)) N5N6	235.9(4)			
Si2-N2		169.1(4)) .				
Sindungsw	inkel	(•)					
Kation:						Anion:	
N1-P1-N2	115.	5(2)	P1-N2-Si2	172.7(3)		Cl1-Re1-C1	173.0(2)
N1-P1-N3	107,	1(2)	P1-N3-P2	93.8(2)		Cl2-Re1-C2	173.6(2)
N1-P1-N4	107.	1(2)	P1-N3-Si3	130.5(2)	1	C13-Re1-C3	174.1(2)
N2-P1-N3	118.	5(2)	P2-N3-Si3	135.2(2)		Cl1-Re2-C4	172.9(2)
N2-P1-N4	120.	6(2)	P1-N4-P2	93.5(2)		C12-Re2-C5	172.6(2)
N3-P1-N4	83.	.3(2)	P1-N4-Si4	131.1(2)		C13-Re2-C6	175.2(2)
N3-P2-N4	89.	.4(2)	P2-N4-Si4	135.2(2)		Re1-Cl1-Re2	84.26(4
N3-P2-N5	119.	.6(2)	P2-N5-Si5	139.2(2)		Re1-C12-Re2	84.44(4
N3-P2-N6	120.	2(2)	P2-N5-Si7	91.8(2)		Re1-C13-Re2	84.74(4
N4-P2-N5	119.	.2(2)	Si5-N5-Si7	128.9(2)		Cl-Re-Cl-Mit	telw. 79.66(4
N4-P2-N6	118.	.7(2)	Si6-N6-Si7	129.9(2)		Cl-Re-C-Mitt	elw. 95.4 (2
N5-P2-N6	92.	5(2)	P2-N6-Si6	137.8(2)		C-Re-C-Mitte	lw. 90.62(2
P1-N1-Si1	133.	5(2)	P2-N6-Si7	92.2(2)		Re-C-O-Mitte	lw. 177.7 (5
Winkel zw	vischer	n defini	erten Ebenen	(°)			
Ebene		definie	rende Atome			2	4
1	P1	N3	P2	N4	1	129.57	
2	P1	N3	Re2	N2	3	68.03	88.57
3	P1	N1	Re 1	N2	4	94.57	
4	Re 1	N2	Re2	C11			

geometrie der Atome P1, P2 und der Siliciumatome ist verzerrt tetraedrisch (Tab. 4), die der Stickstoffatome N3, N4, N5 und N6 (Winkelsummen 359.5°, 359.8°, 359.9° und 359.9°) trigonal-planar. Der P1--N1-Abstand von 163.9(3) pm läßt auf ein kristallstrukturanalytisch nicht nachweisbares H-Atom an N1 schließen. Bemerkenswert ist die fast lineare Anordnung der exocyclischen $Me_3Si - N = P$ -Einheit (P1 – N2 – Si2 172.7(3)°), die mit einer starken Verkürzung des P1-N2- (148.7(3) pm) und des N2-Si2-Abstandes (169.1(4) pm) verbunden ist (vgl. dazu Lit.¹⁶). Diese Strukturdaten stützen eine von Pohl aufgestellte annähernd lineare Beziehung zwischen einer Verkürzung des P=N-Abstandes unter gleichzeitiger Aufweitung des Winkels am Imin-Stickstoff bei acyclischen Phosphazenen mit "lokalisierter" P = N-Bindung^{17a)}. Ähnliche Verhältnisse mit einer unterschiedlich stark gewinkelten Stickstoffbrücke liegen in Verbindungen des Typs $R_3P = NSiR'_3$ (R = R' = Me; P = N154.2(5) pm, N-Si 170.5(5) pm, $P = N - Si 144.6(1)^{\circ 17b}$ und $R_2Si = N - SiR'_3$ (z. B. R = R' = tBu; Si=N 156.8(3) pm, N-Si 169.5(3) pm, Si = N-Si 177.8(2)^{\circ 17c)} vor (vgl. zu dieser Gesamtproblematik auch die Untersuchungen an Si-O-Si-Systemen^{17d}). Die Strukturdaten des Hexacarbonyl-tri-µ-chloro-dirhenat(I)-Anions (Tab. 4) stimmen im wesentlichen mit den Literaturdaten^{18a,b)} überein. Der Re1...Re2-Abstand (336.3(5) pm) liegt in einem Bereich, der eine Metall-Metall-Wechselwirkung wenig wahrscheinlich

Dem Verband der Chemischen Industrie danken wir für die finanzielle Unterstützung.

Experimenteller Teil

erscheinen läßt.

Sämtliche Versuche wurden in einem Schlenk-Rohr unter Argon in absol. Lösungsmitteln durchgeführt. $-{}^{1}H$ -, ${}^{13}C{}^{1}H$ -, ${}^{31}P{}^{1}H$ und temperaturabhängige Spektren: FT-Gerät WP 200, Firma Bruker. Hochfeldverschiebung bedeutet negativer Wert. Die Kopplungskonstanten sind in Hertz ohne Berücksichtigung der absoluten Vorzeichen angegeben. - IR-Spektren: Perkin-Elmer-297-Spektrometer. - Massenspektren: Varian-MAT 811 A. Relative Molmassen: Osmometrisch in CH₂Cl₂.

Ausgangsmaterialien: 1^{19} , [Re(CO)₅X], X = Cl, Br²⁰, [Re- $(CO)_4X]_2, X = Cl, Br^{21}, 7^{22}$

 $(OC)_{4}Re - NR - P(Cl)(NR_{2}) - NR$ (2), $R = SiMe_{3}$: 4370 mg (11.9 mmol) 1, gelöst in 60 ml Benzol, werden mit 3310 mg (9.2 mmol) [Re(CO)₅Cl] versetzt. Die Suspension wird unter Rühren solange auf 75 °C erwärmt, bis die Lösung klar wird (ca. 45 min). Anschließend wird bei dieser Temp. die hellgelbe Lösung 2 h weitergerührt. Nach Entfernen des Lösungsmittels im Ölpumpenvak. wird der Rückstand in 15 ml n-Hexan aufgenommen. Es wird über Filterflocken filtriert, auf ca. die Hälfte eingeengt und 3 d auf -80° C gekühlt. Nach Umkristallisieren aus *n*-Hexan bei -80° C erhält man elfenbeinfarbene Kristalle. Ausb. 4826 mg (6.9 mmol, 75%).

C₁₆H₃₆ClN₃O₄PReSi₄ (699.4) Ber. C 27.48 H 5.19 N 6.01 Gef. C 27.40 H 5.02 N 6.10 Molmasse 655

400zwei nahezu planaren, senkrecht aufeinander stehenden Vierringen (Interplanarwinkel 89.55°). Die Koordinations-

Thermolyseprodukte 3, 4 und 5: 1049 mg (1.5 mmol) 2 werden in Das spirocyclische Kation des Komplexes 6a besteht aus Substanz 4 h auf 110°C erwärmt, wobei man entstehendes CO, Me₃SiCl und HCl - soweit nicht durch Weiterreaktion verbraucht - durch Anlegen eines Vakuums von ca. 12 Torr entfernt.

Durch Zugabe von 1 ml Diethylether läßt sich der tetracyclische Rheniumkomplex 5 als farbloses Pulver ausfällen, das – aus Dichlormethan/n-Hexan (3:1) bei 5°C umkristallisiert – 249 mg (0.23 mmol, 30%) ergibt. Die Etherlösung wird i. Vak. vollständig eingeengt und der Rückstand – aufgenommen in 0.5 ml Toluol – bei -20°C (2 d) umkristallisiert. Ausb. 129 mg Dispiroverbindung 3 (0.11 mmol, 7%). Nach Entfernen des Toluols i. Vak. wird der cubanartige Komplex 4 durch Lösen des Rückstandes in 0.5 ml Diethylether und Kühlen auf -80°C (2 d) als weißes Kristallpulver erhalten, das man erneut aus diesem Lösungsmittel bei -80°C umkristallisiert. Ausb. 206 mg (0.18 mmol, 24%). Die isolierten Produkte werden ca. 5 h bei 0.01 Torr getrocknet.

3: $C_{26}H_{54}N_6O_8P_2Re_2Si_6$ (1181.6)	Ber. C 26.43	H 4.61 N 7.11
	Gef. C 26.40	H 4.55 N 7.10
4: $C_{24}H_{54}N_6O_6P_2Re_2Si_6$ (1125.6)	Ber. C 25.61	H 4.84 N 7.47
	Gef. C 25.40	H 4.69 N 7.60
EI MS (100 aV 140°C): m/a (9	$(A) = 1126 (M^{2})$	+ 10) sukzessiv

EI-MS (100 eV, 140 °C): m/z (%) = 1126 (M⁺, 10), sukzessive Abspaltung der sechs CO-Liganden.

5: C₂₁H₄₇ClN₆O₆P₂Re₂Si₅ (1089.3) Ber. C 23.12 H 4.34 N 7.70 Gef. C 22.50 H 4.18 N 7.50 Molmasse 1198

Komplexsalze 6a, b

a) Durch Umsetzung von 7 mit [$Re(CO)_5X$], X = Cl, Br: 732 mg (1.0 mmol) 7 und 2.0 mmol [$Re(CO)_5X$] (X = Cl, 723 mg; X = Br, 812 mg) werden in 20 ml Toluol 3.5 h bei 110°C gerührt. Während der Reaktion färbt sich die anfangs farblose Lösung orange; gleichzeitig fallen die Salze **6a** bzw. **6b** als dunkelbraune Öle aus. Die Reaktionslösung wird auf ca. 2 ml eingeengt und 1 d auf -80 °C gekühlt. Abpipettieren der überstehenden Lösung und Versetzen des Öls mit 2 ml Diethylether ergibt **6a** bzw. **6b** als farblose Kristalle, die aus 1 ml heißem Toluol umkristallisiert werden. Ausb. 429 mg (0.33 mmol, 38%) **6a**, 524 mg (0.37 mmol, 37%) **6b**.

b) Durch Umsetzung von 7 mit $[(OC)_4 ReX]_2$, X = Cl, Br: 732 mg (1.0 mmol) 7 und 1.0 mmol $[(OC)_4 ReX]_2$ (X = Cl, 667 mg; X = Br, 756 mg) werden in 20 ml Toluol 3.5 h auf 110 °C erhitzt. Aufarbeitung wie bei a). Ausb. 448 mg (0.35 mmol, 35%) **6a**, 546 mg (0.38 mmol, 38%) **6b**.

6a : $C_{26}H_{61}Cl_3N_6O_6P_2Re_2Si_7$ (1291.1)	Ber. C 24.19 H 4.76 N 6.51		
	Gef. C 23.90 H 4.69 N 6.60		
	Molmasse 1171		
6b : $C_{26}H_{61}Br_3N_6O_6P_2Re_2Si_7$ (1424.5)	Ber. C 21.92 H 4.32 N 5.90		
	Gef. C 21.50 H 4.18 N 5.40		
	Molmasse 1328		

Molare Leitfähigkeit (CH₂Cl₂, 25 °C, $10^{-5} \text{ mol} \cdot 1^{-1}$): **6a**: 79.86, **6b** 74.50 [S \cdot cm² \cdot mol⁻¹].

Röntgenstrukturanalysen¹³⁾

3: $C_{26}H_{54}N_6O_8P_2Re_2Si_6 \cdot 3/2 C_7H_8$, Molmasse 1319.8, Enraf-Nonius-CAD-4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator, Kristallgröße 0.44 × 0.22 × 0.48 mm, a =1444.6(2), b = 1769.7(4), c = 1366.6(2) pm, $\alpha = 108.71(2)$, $\beta =$ 117.92(2), $\gamma = 72.55(2)^\circ$, $V = 2877(1) \cdot 10^6$ pm³, triklin, Raumgruppe

Tab, 5. Atomkoordinaten und Temperaturfaktoren [A ²] von 3 mit Standardaby
--

ekül a	:		_		Molekü	1 b:			
ที	x/a	y/b	z/c	B _{eq} *)	Atom	x/a	у/b	.z/c	B _{eq} *)
	0.5951(4)	0.01902(3)	0.18502(4)	3.40(1)	Re 1	0.44654(4)	0.34856(3)	0.69047(4)	3.78(1)
-	0.0033(2)	0.0021 (2)	0.4076 (2)	2.69(8)	P1	0.4995 (2)	0.4519 (2)	0.9099 (2)	2.93(8)
	0.0544(3)	0.1640 (2)	0.4185 (3)	4.1 (1)	Si1	0.5049 (3)	0.5360 (2)	0.7407 (3)	4.7 (1)
~	0.0104(3)	-0.1695 (2)	0.2407 (3)	3.7 (1)	Si2	0.5515 (3)	0.2686 (2)	0.9272 (3)	4.0 (1)
-	0.2309(2)	0.0554 (2)	0.4176 (3)	3.7 (1)	Si3	0.2682 (3)	0.5212 (2)	0.9108 (3)	4.1 (1)
_	0.1355(6)	-0.0896 (5)	-0.0515 (7)	6.2 (2)	01	0.4125 (7)	0.1720 (5)	0.5910 (7)	6.7 (2)
-	0.0869(6)	0.1588 (5)	0.830 (7)	6.6 (2)	02	0.3758 (7)	0.3692 (5)	0.4495 (8)	7.8 (3)
-	0.2998(6)	0.0829 (5)	0.1194 (6)	5.9 (2)	03	0.2004 (7)	0.3784 (5)	0.6130 (7)	7.2 (3)
	0.1695(6)	-0 0367 (5)	0.1846 (6)	5.9 (2)	04	0.6694 (7)	0.2821 (5)	0.6856 (8)	8.3 (3)
	0.0027(6)	0.0748 (5)	0.3679 (6)	3.1 (2)	N 1	0.4832 (6)	0.4704 (4)	0.7953 (6)	3.1 (2)
_1	0.0275(6)	-0 0644 (4)	0.2951 (6)	3.1 (2)	N2	0.5033 (6)	0.3564 (5)	0.8736 (6)	3.2 (2)
-	0.0907(6)	0.0227 (4)	0.4678 (6)	2.8 (2)	N3	0.4047 (6)	0.5082 (4)	0.9647 (6)	2.7 (2)
-	0.1079(9)	-0.0461 (7)	0.038 (1)	5.0 (3)	C1	0.4259 (9)	0.2395 (7)	0.627 (1)	5.3 (3)
-	0.076 (1)	0.1027 (7)	0.117 (1)	6.3 (4)	C2	0.406 (1)	0.3615 (7)	0.543 (1)	5.7 (3)
-	0.2072(9)	0.0575 (7)	0.1540 (9)	5.0 (3)	C3	0.2914 (9)	0.3738 (7)	0.652 (1)	5.5 (3)
	0.0860(9)	-0.0166 (7)	0.1898 (9)	4.8 (3)	C 4	0.5924 (9)	0.3089 (7)	0.697 (1)	5.5 (3)
	0.1445(9)	0.1809 (6)	0.5745 (9)	4.6 (3)	C11	0.580 (1)	0.6135 (7)	0.854 (1)	5.8 (3)
-	0.0:72(9)	0.2513 (7)	0.384 (1)	5.4 (3)	C12	0.590 (1)	0.4818 (7)	0.661 (1)	5.8 (3)
	0.1467(9)	0.1598 (7)	0.3537 (9)	5.0 (3)	C13	0.380 (1)	0.5824 (7)	0.639 (1)	5.7 (3)
	0.0668(9)	-0.2275 (7)	0.3556 (9)	4.8(3)	C21	0.6362 (9)	0.2891 (7)	1.0845 (9)	4.7 (3)
-	0.1430(9)	-0.2008 (7)	0.145 (1)	5.6 (3)	C22	0.6431 (9)	0.1949 (6)	0.8670 (9)	4.4 (3)
	0.0676(9)	-0.2036 (7)	0.1549 (9)	5.0 (3)	C 23	0.4392 (9)	0.2192 (7)	0.8881 (9)	4.9 (3)
-	-0.2676(9)	0.0604 (7)	0.533 (1)	5.3 (3)	C31	0.230 (1)	0.5946 (7)	1.024 (1)	6.1 (4)
: -	-0.2689(9)	0.1567 (7)	0.385 (1)	5.3 (3)	C32	0.2233 (9)	0.4243 (7)	0.877 (1)	5.6 (3)
-	0.2967(9)	-0.0186 (6)	0.2879 (9)	4.6 (3)	C33	0.2071 (9)	0.5605 (7)	0.779 (1)	5.3 (3)
	0.414 (1)	0.0695 (7)	0.264 (1)	6.4 (4)	C5	0.096 (2)	0.475 (2)	0.304 (2)	6.7 (8)
	0.406 (1)	0.1537 (8)	0.303 (1)	7.9 (4)	C6	0.101 (2)	0.520 (1)	0.251 (2)	5.6 (7)
	0.395 (1)	0.2012 (9)	0.234 (1)	9.7 (5)	C7	0.098 (3)	0.467 (2)	0.147 (3)	10 (1)
	0.399 (1)	0.1660 (9)	0.129 (1)	8.9 (5)	C8	0.108 (2)	0.387 (2)	0.128 (3)	9 (1)
	0.409 (1)	0.0869 (8)	0.093 (1)	7.1 (4)	C9	0.105 (2)	0.354 (2)	0.202 (2)	6.8 (8
1	0.416 (1)	0.0381 (7)	0.159 (1)	6.1 (4)	C1 0	0.094 (2)	0.401 (1)	0.301 (2)	4.6 (6)
	0.424 (1)	0.0189 (8)	0.339 (1)	6.7 (4)	C 51	0.090 (2)	0.512 (2)	0.402 (3)	9 (1)
I	0.409 (1) 0.416 (1) 0.424 (1)	0.0869 (8) 0.0381 (7) 0.0189 (8)	0.093 (1) 0.159 (1) 0.339 (1)	7.1 (4) 6.1 (4) 6.7 (4)	C9 C1 0 C 51	0.105 (2) 0.094 (2) 0.090 (2)	0.354 (2) 0.401 (1) 0.512 (2)	0.202 (2) 0.301 (2) 0.402 (3)	

*) Nur die Re-,P- und Si-Atome wurden anisotrop verfeinert.

 $P\bar{1}, Z = 2, D_c = 1.52 \text{ g/cm}^3, \mu = 44.8 \text{ cm}^{-1}, \omega$ -scan. Datensammlung von 7496 unabhängigen Intensitäten bei 20°C ($2\Theta \le 45^\circ$), davon 5455 beobachtet $[F_o^2 \ge 2.0 \sigma(F_o^2)]$. Es wurde eine empirische Absorptionskorrektur (Ψ -scan, max. Trans. 41.3%, min. Trans. 16.8%) durchgeführt. Strukturlösung durch Patterson-Synthese und anschließende Differenz-Fourier-Synthesen. Strukturverfeinerung nach der Methode der kleinsten Fehlerquadrate mit dem SDP-Programmsystem. Die Positionen der Wasserstoffatome wurde geometrisch berechnet (C-H-Abstand 108 pm). R = 0.048, $R_w =$ 0.042, w = $K(\sigma^2(F_0) + 0.0001 F_0^2)^{-1}$, 307 Parameter. Maximale Restelektronendichte 0.97 $e/Å^3$.

5: C₂₁H₄₇ClN₆O₆P₂Re₂Si₅, Molmasse 1089.3, Enraf-Nonius-CAD-4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator, Kristallgröße $0.26 \times 0.08 \times 0.18$ mm, a = 1258.8(1), b = $1733.4(1), c = 1873.8(1) \text{ pm}, V = 4088.6(5) \cdot 10^6 \text{ pm}^3$, orthorhombisch, Raumgruppe $Pca2_1$, Z = 4, $D_c = 1.77$ g/cm³, $\mu =$ 63.2 cm⁻¹, ω-scan. Datensammlung von 3716 unabhängigen Intensitäten bei 20 °C ($2\Theta \le 50^\circ$), davon 3298 beobachtet $[F_o^2 \ge 2.0 \sigma(F_o^2)]$. Es wurde eine empirische Absorptionskorrektur

Tab. 6. Atomkoordinaten und Temperaturfaktoren [Å²] von 5 mit Standardabweichungen

Atom	x/a	y/b	z/c	B _{eq} *)
Re 1	0.07086(4)	0.21422(3)	0.000	3.10 (1)
Re2	0.03411(4)	0.38592(3)	0.10929(4)	2.617(8)
Cl1	-0.0563 (3)	0.3266 (2)	0.0025 (2)	3.88 (7)
P1	0.0029 (3)	0.2240 (2)	0.1438 (2)	2.29 (7)
P2	-0.0799 (3)	0.2788 (2)	0.2469 (2)	2.50 (7)
Si1	-0.1245 (3)	0.0941 (3)	0.0689 (2)	4.1 (1)
Si2	0.2437 (3)	0.2521 (2)	0.1380 (2)	3.22 (8)
Si4	0.0189 (3)	0.1196 (3)	0.2903 (2)	3.93 (9)
Si5	-0.0671 (3)	0.3969 (2)	0.3719 (2)	3.55 (9)
Si6	-0.3251 (3)	0.2974 (3)	0.2258 (2)	3.9 (1)
01	0.2155 (9)	0.3076 (7)	-0.0960 (6)	6.9 (3)
02	-0.023 (1)	0.1441 (7)	-0.1366 (6)	10.6 (4)
03	0.2150 (8)	0.0769 (6)	-0.0111 (6)	7.0 (3)
04	0.1873 (7)	0.4720 (6)	0.0124 (6)	6.0 (3)
05	-0.1048 (8)	0.5291 (5)	0.1135 (7)	6.8 (3)
06	0.1317 (8)	0.4641 (6)	0.2374 (5)	5.4 (3)
N1	-0.0274 (8)	0.1625 (6)	0.0858 (5)	3.1 (2)
N2	0.1109 (7)	0.2652 (5)	0.1111 (6)	2.6 (2)
N3	-0.0683 (7)	0.3031 (5)	0.1630 (5)	2.2 (2)
N4	-0.0110 (7)	0.1955 (6)	0.2307 (5)	2.5 (2)
N5	-0.0207 (8)	0.3264 (6)	0.3092 (5)	3.2 (2)
N6	-0.2035 (8)	0.2730 (6)	0.2/06 (6)	3.4 (3)
C1	0.160 (1)	0.2/28 (8)	-0.0598 (7)	4.1 (3)
L2	0.012(2)	0.1/24 (8)	-0.0848 (9)	0.5 (5)
63	0.163 (1)	0.1330 (8)	-0.0049 (8)	4.8 (3)
U4 05	0.130(1)	0.4407 (8)	0.0500 (8)	4.1 (4)
15	-0.0514 (9)	0.4/39 (/)		4.1 (3)
	0.097 (1)	0.4331 (8)	0.1009 (8)	5.0 (3)
012	+0.051 (1)	0.0079(9)	0.0303(9)	5.7 (4)
012	-0.224 (1)	0.1320 (9)	0.005 (1)	5.2(4)
021	-0.190 (1)	0.0046(9)	0.1520 (9)	3.4 (4)
C22	0.330(1)	0.2000 (9)	0.0001 (0)	4.4 (4)
022	0.271(1)	0.1400 (0)	0.1341 (9)	4.5 (4)
CA1	0.056 (1)	0.3004(3)	0.2242 (0)	4.0 (4)
C42	-0 103 (1)	0.000 + (7)	0.3443 (9)	72(5)
642	0 132 (1)	0 1496 (9)	0 3523 (8)	59(4)
0.51	-0.152 (1)	0.348 (1)	0.4411(9)	6.8 (5)
C52	0.056 (1)	0.438 (1)	0.4149 (8)	5.3 (4)
0.53	-0.135 (1)	0.4764 (8)	0.3242 (8)	5.1 (4)
C61	-0.301 (1)	0.3662 (9)	0.1499 (8)	5.4 (4)
C62	-0.392 (1)	0.202 (1)	0.194 (1)	7.4 (4)
C63	-0.405 (1)	0.3426 (9)	0.299 (8)	4.9 (4)
	,		,	

*) Alle angegebenen Atome wurden anisotrop verfeinert.

*) Alle angegebenen Atome wurden anisotrop verfeinert.

(Ψ -scan, max. Trans. 41.5%, min. Trans. 21.3%) durchgeführt. Strukturlösung und -verfeinerung wie bei 3. Die Wasserstoffatome wurden nicht berücksichtigt. R = 0.038, $R_w = 0.032$, w = $K(\sigma^2(F_0) + 0.0002 F_0^2)^{-1}$, 388 Parameter. Maximale Restelektronendichte 0.72 $e/Å^3$.

6a: C₂₆H₆₁Cl₃N₆O₆P₂Re₂Si₇, Molmasse 1291.1, Enraf-Nonius-CAD-4-Vierkreisdiffraktometer, Mo- K_{α} -Strahlung, Graphitmonochromator, Kristallgröße $0.32 \times 0.36 \times 0.28$ mm, a = 1383.4(4),

Tab. 7. Atomkoordinaten und Temperaturfaktoren [Å²] von 6a mit Standardabweichungen

А

Atom	x/a	y/b	z/c	B _{eq} *)
	0.2690(1)	0.3739(1)	0.0811(_1)	3.9(1)
Do2	0.2662(1)	0.1881(1)	-0.0233(1)	3.8(1)
C11	0.3863(1)	0.2769(1)	0.1502(2)	4.5(1)
C12	0.2700(2)	0.2927(1)	-0.1349(2)	5.6(1)
C13	0.1485(1)	0.2745(1)	0.0744(2)	4.6(1)
P1	0.3011(1)	-0.2184(1)	-0.4963(2)	2.4(1)
P2	0.1948(1)	-0.2657(1)	-0.3774(2)	2.3(1)
Si 1	0.4988(2)	-0.2641(1)	-0.5834(2)	4.1(1)
Si2	0.2776(2)	-0.0776(1)	-0.6231(2)	3.8(1)
Si3	0.1303(2)	-0.3325(1)	-0.6777(2)	3.5(1)
Si4	0.3479(1)	-0.1411(1)	-0.1955(2)	3.2(1)
Si5	0.2830(2)	-0.4100(1)	-0.2776(2)	3.6(1)
Si6	-0.0012(2)	-0.1722(1)	-0.3719(2)	4.7(1)
Si7	0.0940(1)	-0.3093(1)	-0.2495(2)	3.4(1)
01	0.1130(5)	0.4757(3)	-0.0331(7)	8.4(2)
02	0.2645(5)	0.4568(4)	0.3521(6)	8.7(2)
03	0.4305(5)	0.4834(4)	0.0969(7)	9.4(2)
04	0.1052(5)	0.0951(4)	-0.2327(7)	9.1(2)
05	0.2641(5)	0.0765(3)	0.1437(6)	7.2(2)
06	0.4171(4)	0.0946(4)	-0.1435(7)	7.8(2)
N 1	0.4016(4)	-0.2669(3)	-0.5036(5)	3.0(1)
N2	0.2882(4)	-0.1559(3)	-0.5645(5)	3.5(2)
N3	0.2025(3)	-0.2815(3)	-0.5285(5)	2.2(1)
N4	0.2875(3)	-0.2046(3)	-0.3386(5)	2.3(1)
N5	0.2040(4)	-0.3349(3)	-0.3035(5)	2.6(1)
N6	0.0905(4)	-0.2393(3)	-0.3392(5)	2.7(1)
C1	0.1722(6)	0.4383(5)	0.0112(9)	5.6(3)
C2	0.2681(6)	0.4258(5)	0.2522(8)	5.3(2)
C3	0.36/6(6)	0.4400(5)	0.0857(8)	5.8(2)
C4	0.1645(6)	0.1309(5)	-0.15/2(9)	5.7(3)
C5	0.2643(6)	0.1182(5)	0.0811(8)	4.8(2)
C6	0.3605(6)	0.1306(5)	-0.0951(9)	5.2(2)
C11	0.5635(6)	-0.3532(5)	-0.56/4(10)	8.4(3)
C12	0.5858(6)	-0.1839(6)	-0.5014(9)	7.0(3)
C13	0.4503(6)	-0.263/(6)	-0./58/(8)	6.3(3)
C21	0.3945(6)	-0.0550(5)	-0.0004(9)	7.3(3)
022	0.2549(7)	0.0049(5)	-0.4991(9)	/.9(3)
623	0.1/42(8)	-0.0899(5)	-0.7709(10)	9.9(3)
C31	0.0037(7)	-0.4089(5)	-0.0412(8)	0.2(2)
632	0.2198(0)	-0.3/03(5)	-0.7783(8)	5.8(3)
633	0.0423(0)	-0.2000(5)	-0.7560(8)	5./(3)
041	0.4022(5)	-0.1030(4)	-0.2209(0)	4.5(2)
C42	0.3010(0)	-0.1943(5)	-0.0035(7)	- 4.9(Z) - 6.2(2)
043	0.2000(0)	-0.0055(5)	-0.1507(9)	1 9(2)
051	0.3039(3)	-0.4110(4)	-0.3033(8)	5 1/2)
0.52	0.2002(0)	-0.4307(4)	-0.0410(3)	7 1/2
C61	0.0044(7)	-0.3979(3)	-0.0302(0)	5 2(2)
C62	_0 0250(6)	-0.1004(4)	-0.4020(0)	7 7(2)
C62	-0.0239(0)	-0.1221(3)	-0.213/(9)	9 9 (4)
003		-0.2213(0)	-0.3121(0)	5 3(2)
C72	-0.0104(5)	-0.3004(4)	-0.3121(0)	5.3(Z)
672	0.1155(0)	-0.2/44(5)	-0.0/1/(/)	2.V(Z)

Chem. Ber. 120, 1183-1190 (1987)

 $b = 1843.4(3), c = 1089.8(4) \text{ pm}, \alpha = 102.72(2), \beta = 103.74(3), \gamma =$ $88.25(2)^{\circ}$, $V = 2633(3) \cdot 10^{6} \text{ pm}^{3}$, triklin, Raumgruppe P1, Z = 2, $D_c = 1.63 \text{ g/cm}^3$, $\mu = 50.6 \text{ cm}^{-1}$, ω -scan. Datensammlung von 9050 unabhängigen Intensitäten bei 20°C ($2\Theta \le 50^\circ$), davon 6805 beobachtet $[F_o^2 \ge 2.5 \sigma(F_o^2)]$. Es wurde eine empirische Absorptionskorrektur (\U-scan, max. Trans. 31.8%, min. Trans. 16.2%) durchgeführt. Strukturlösung und -verfeinerung wie bei 3. Die Positionen der Wasserstoffatome wurden geometrisch berechnet (C-H-Abstand 108 pm). R = 0.035, $R_w = 0.037$, $w = K(\sigma^2(F_o) + K$ $(0.00003 F_{0}^{2})^{-1}$, 469 Parameter. Maximale Restelektronendichte 1.40 $e/Å^3$.

CAS-Registry-Nummern

- 1: 52111-28-1 / 2: 107985-57-9 / 3: 107985-58-0 / 4: 107985-59-1 / 5: 107985-60-4 / 6a: 108007-50-7 / 6b: 108007-51-8 / 7: 61582-94-3 / [Re(CO)₅Cl]: 14099-01-5 / [Re(CO)₅Br]: 14220-21-4 / [(OC)₄ReCl]₂: 15189-52-3 / [(OC)₄ReBr]₂: 15189-54-5
- ¹⁾ XXVII. Mitteilung: O. J. Scherer, K. Forstinger, J. Kaub, W. S. Sheldrick, Chem. Ber. 119 (1986) 2731. ²⁾ Neueste Übersichten: ^{2a)} E. Fluck, Top. Phosphorus Chem. 10
- (1980) 194. $-^{2b}$ M. Regitz, G. Maas, *Top. Curr. Chem.* 97 (1981) 71. $-^{2c}$ F. H. Westheimer, *Chem. Rev.* 81 (1981) 313. $-^{2d}$ H. Germa, J. Navech, Phosphorus Sulfur 26 (1986) 327.
- ³⁾ Ubersicht: O. J. Scherer, Angew. Chem. **97** (1985) 905; Angew. Chem. Int. Ed. Engl. **24** (1985) 924.
- J. Kerth, Dissertation, Univ. Kaiserslautern, 1984.
- ⁵⁾ Übersicht: I. Haiduc, I. Silaghi-Dumitrescu, Coord. Chem. Rev. 74 (1986) 127
- ⁶⁰ ^{6a)} M. Becke-Goehring, L. Leichner, Angew. Chem. **76** (1964) 686; Angew. Chem. Int. Ed. Engl. **3** (1964) 590. ^{6b)} J. Weiss, G. Hartmann, Z. Anorg. Allg. Chem. 351 (1967) 152.
- ⁷⁾ E. Horn, M. R. Snow, P. C. Zeleny, Aust. J. Chem. 33 (1980) 1659.
- ^{1059.}
 ⁸⁾ ^{8a)} M. Veith, M. Grosser, O. Recktenwald, J. Organomet. Chem.
 216 (1981) 27; M. Veith, W. Frank, Angew. Chem. **96** (1984) 163;
 Angew. Chem. Int. Ed. Engl. **23** (1984) 158; *ibid.* **97** (1985) 213;
 24 (1985) 223. ^{8b)} H. Fußstetter, H. Nöth, Chem. Ber. **112** (1979) 3672. ^{8c)} K. Utvary, W. Czysch, Monatsh. Chem. **103** (1972) 1048; M. Charwath, K. Utvary, J. M. Kanamueller, *ibid.*

108 (1977) 1359; K. Utvary, M. Kubjacek, ibid. 110 (1979) 211. ¹⁰⁶ (1977) 1359, K. Otvary, M. Rubjack, *ibid.* 110 (1977) 211. – ⁸⁰ A. M. Pinchuk, V. A. Kovenya, *Zh. Obshch. Khim.* **44** (1974) 705. – ⁸⁰ H. Schmidbaur, A. Schier, U. Schubert, *Chem. Ber.* **116** (1983) 1938. – ⁸⁰ W. Clegg, R. Mulvey, R. Snaith, G. E. Toogood, K. Wade, J. Chem. Soc., *Chem. Commun.* **1986**, 1740.

- ^{9) 9a)} R. Appel, E. Gaitzsch, F. Knoch, Angew. Chem. **97** (1985) 574; Angew. Chem. Int. Ed. Engl. **24** (1985) 589. ⁹⁶⁾ H. W. Roesky, R. Ahlrichs, S. Brode, Angew. Chem. 98 (1986) 91; Angew. Chem.
- Int. Ed. Engl. 25 (1986) 82.
 ¹⁰ ^{10a)} P. Toffoli, P. Khodadad, N. Rodier, Acta Crystallogr., Sect. B, 34 (1978) 3561. ^{10b)} C. Wibbelmann, W. Brockner, B. Eisenmann, H. Schäfer, Z. Naturforsch., Teil B, 38 (1983) 1575. ^{10c)} Ch. Donath, M. Meisel, K.-H. Jost, K. K. Palkina, S. I. Maksimova, N. T. Cibiskova, Z. Naturforsch., Teil B, 41 (1986) 1201.
 ¹¹⁾ O. J. Scherer, J. Kerth, B. K. Balbach, M. L. Ziegler, Angew Cham 94 (1982) 136;
- Chem. 94 (1982) 149; Angew. Chem. Int. Ed. Engl. 21 (1982) 136; Angew. Chem. Suppl. 1982, 169.
- ¹²⁾ B. J. Brisdon, D. A. Edwards, J. W. White, J. Organomet. Chem. 161 (1978) 233
- ¹³⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52333, der Autoren und des Zeitschriftenzitats angefordert werden.
- ¹⁴⁾ Z. B. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, S. 65ff., Pergamon Press, New York.
- ¹⁵⁾ Z. B. W. A. Herrmann, J. Organomet. Chem. 300 (1986) 111, und dort zitierte Literatur.
- ¹⁶ O. J. Scherer, J. Kerth, M. L. Ziegler, Angew. Chem. **95** (1983) 510; Angew. Chem. Int. Ed. Engl. **22** (1983) 503; D. Schomburg,
- A. Blaschette, E. Wieland, Z. Naturforsch., Teil B, 41 (1986) 1112. ¹⁷⁾ ^{17a} S. Pohl, J. Organomet. Chem. 142 (1977) 195. ^{17b} E. E. Astrup, A. M. Bonzga, K. A. Ostoja Starzewski, J. Mol. Struct. 51 (1979) 51. $-^{176}$ N. Wiberg, K. Schurz, G. Reber, G. Müller, J. Chem. Soc., Chem. Commun. 1986, 591. $-^{17d}$ I. L. Karle, J.
- M. Karle, C. J. Nielsen, Acta Crystallogr., Sect. C, 42 (1986) 64. ¹⁸⁾ ¹⁸ai R. L. Davis, N. C. Baenzinger, Inorg. Nucl. Chem. Lett. 13 (1977) 475. ^{18b} C. P. Hrung, M. Tsutsui, D. L. Culler, E. F. Meyer jr., C. N. Morimoto, J. Am. Chem. Soc. 100 (1978) 6068.
- ¹⁹⁾ O. J. Scherer, N. Kuhn, Chem. Ber. 107 (1974) 2123 ^{20]} K. J. Reimer, A. Shaver, M. H. Quick, R. J. Angelici, Inorg. Synth.
- 19 (1979) 158
- ²¹⁾ E. W. Abel, G. B. Hargreaves, G. Wilkinson, J. Chem. Soc. 1958, 3149
- ²²⁾ R. Appel, M. Halstenberg, J. Organomet. Chem. 121 (1976) C 47.

[32/87]